

A Scalable Method for Ab Initio Computation of Free Energies in Nanoscale Systems

Markus Eisenbach, Oak Ridge National Laboratory Chenggang Zhou, J.P. Morgan Chase & Co. Donald M. Nicholson, Oak Ridge National Laboratory Gregory Brown, Florida State University Jeff Larkin, Cray Inc. Thomas C. Schulthess, ETH Zurich

(Spin) Density Functional Theory: The Canonical approach that solves most computational materials/nanoscience

Energy, $E[n_{\uparrow},n_{\downarrow}]$, a unique functional of density $n_{\sigma}(r)=\sum_{i}\phi_{i,\sigma}^{*}(r)\phi_{i,\sigma}(r)$

Kohn-Sham equation:

$$-\nabla^2 \phi_{i,\sigma}(r) + V_{\sigma}(r)\phi_{i,\sigma}(r) = \epsilon_i \phi_{i,\sigma}(r)$$

Nearsightedness and the locally self-consistent multiple scattering (LSMS) method

- Nearsightedness of electronic matter - Prodan & Kohn, PNAS 102, 11635 (2005)
 - Local electronic properties such as density depend on effective potential only at nearby points.
- Locally self-consistent multiple scattering method - Wang et al., PRL 75, 2867 (1995)
 - Solve Kohn-Sham equation on a cluster of a few atomic shells around atom for which density is computed
 - Solve Poisson equation for entire system - long range of bare coulomb interaction

A parallel implementation and scaling of the LSMS method: perfectly scalable at high performance

- •Need only block i of au
- $\bullet \left(\begin{array}{c|c} A & B \\ \hline C & D \end{array}\right)^{-1} = \left(\begin{array}{c|c} (A BD^{-1}C)^{-1} & * \\ \hline * & * \end{array}\right)$
- Calculation dominated by ZGEMM
- Sustained performance similar to Linpack

Just looking at larger systems (weak scaling) is not necessarily what is needed

Coarse grained model of a nanoparticle

Realistic model or LDA/GGA based DFT calculation. In most cases $E(T,\vec{M}) \approx E(T=0,\vec{M})$

With the density of states we would know the free energy at all temperature

Can we compute the density of states?

Metropolis Method

Metropolis et al, JCP 21, 1087 (1953)

$Z = \int e^{-E[\mathbf{x}]/k_{\rm B}T} d\mathbf{x}$

Compute partition function and other averages with configurations that are weighted with a Boltzmann factor

Sample configuration where Boltzmann factor is large.

1. Select configuration

$$E_i = E[\mathbf{x}_i]$$

2. Modify configuration (move)

$$E_f = E[\mathbf{x}_f]$$

3. Accept move with probability

$$A_{i \to f} = \min\{1, e^{\beta(E_i - E_f)}\}$$

Wand-Landau Method

Wang and Landau, PRL 86, 2050 (2001)

$$Z = \int W(E)e^{-E/k_{\rm B}T}dE$$

If configurations are accepted with probability 1/W all energies are visited equally (flat histogram)

- 1. Begin with prior estimate, eg W'(E) = 1
- 2. Propose move, accepted with probability

$$A_{i \to f} = \min\{1, W'(E_i)/W'(E_f)\}$$

3. If move accepted increase DOS

$$W'(E_f) \to W'(E_f) \times f \quad f > 1$$

- 4. Iterate 2 & 3 until histogram is flat
- 5. Reduce $f \to f = \sqrt{f}$ and go back to 1

Metropolis Method

Wand-Landau Method

$$Z = \int e^{-E[\mathbf{x}]/k_{\rm B}T} d\mathbf{x}$$

$$Z = \int W(E)e^{-E/k_{\rm B}T}dE$$

Sample configuration space with probability

Check validity of Wang-Landau method by estimating barrier hight from Metropolis MC and fitting to $KV \sin^2 \Theta$

Quantitative test for bulk model of FePt

Not quite embarrassingly parallel

Metropolis MC acceptance:

$$A_{i \to f} = \min\{1, e^{\beta(E_i - E_f)}\}$$

Wang-Landau acceptance:

$$A_{i \to f} = \min\{1, e^{\alpha(w_{\alpha}(x_f) - w_{\alpha}(x_i))}\}$$

local calculation of energy and observable ~ millisecond to minutes

Test problem: ab initio simulation of magnetism in Fe

- Robust local magnetic moment
 - Well reproduced by LDA calculation
- Ferromagnetic transition temperature T_c =1050K
 - LDA + mean field on magnetic fluctuations overestimates T_c
 - Adding Onsager cavity field corrections improves results
 - What would a full ab initio Monte Carlo simulation give for T_c ?

Excellent test for WL-LSMS method:

- Bulk Fe with N atoms (hundreds) in unit cell
- Sample non-collinear magnetic moment configurations $\{\vec{m}_1,\vec{m}_2,...,\vec{m}_N\}$
- Compute energy with LSMS method using (LSDA) and frozen potential approx.
- Accumulate density of states with extended Wang Landau algorithm

Organization of the WL-LSMS code using a master-slave approach

Scaling test with WL-LSMS code

What it takes to compute a converged DOS on a Cray XT5

	16 atoms	250 atoms
WL walkers	200	400
total cores	3,208	100,008
WL samples	23,200	590,000
CPU-core hours	12,300	4,885,720

Just 2 days!!!

With the DOS we have the partition function and everything else!

$$Z'(T) = g_0 \int g(E)e^{-E/(k_B T)}dE = g_0 Z$$

unknown normalization factor

$$F = -k_B T \ln Z \qquad S = -\frac{\partial F}{\partial T}$$
$$U = F + TS = F' + TS'$$

Specific heat
$$C = \frac{\partial U}{\partial T}$$

WL simulations for cubic Heisenberg model

$$E(\{\vec{S}_i\}) = \sum_{i \neq j} J \vec{S}_i \vec{S}_j$$

L	$T_{c}(J)$
2	1.105
3	1.340
4	1.370
5	1.420
6	1.465
7	1.460
8	1.490
∞	1.44

Upgraded Cray XT5 portion of Jaguar @ NCCS

Weak scaling on Cray XT5 (Jaguar)

Number of cores

Sustained performance of WL-LSMS on Cray XT5

Number of cores

Conclusions

- It is now possible to compute free energies in nanoscale systems
 - using ab initio methods based on Density Functional Theory
 - fully taking into account entropy
- First ab initio calculation of ferromagnetic transition temperature in Fe that does not rely on mean-field approximation
 - LDA answer based on WL-LSMS underestimate Tc by (only) 7%
- WL-LSMS code sustained 1.836 Petaflop/s (double precision) on 223,232 cores of the Cray XT5 system Jaguar